

ISA Certified Arborist Utility Specialist®

EXAMINATION OUTLINE

About the Program

When a professional becomes an ISA Certified Arborist Utility Specialist*, they should be recognized by their peers and the public as a tree care professional who has met minimum experience eligibility requirements and achieved an industryaccepted level of knowledge in core areas in the utility field of arboriculture.

Domains

Domains are the major responsibilities or duties that characterize the practice of utility arboriculture. Percentages denote the amount of the exam that is devoted to each domain.

- Electrical Utility Pruning (20%)
- Program Management (13%)
- Integrated Vegetation Management (18%)
- Electrical Knowledge (29%)
- Customer Relations (20%)

Electrical Utility Pruning

Task A: Establish pruning protocols using tree species, site conditions, and utility infrastructure to manage environmental impact, minimize tree stress, consider aesthetics, and meet utility reliability needs.

Knowledge of:

- 1. Apical dominance
- 2. Apical control
- 3. Branch attachment
- 4. Epicormic shoots (i.e., watersprouts)
- 5. Wound closure
- 6. Tree species characteristics (i.e., branching pattern, size potential, and growth rate)
- 7. Pruning objectives (e.g., raising and reduction)
- 8. Directional pruning (e.g., natural pruning versusb directional pruning)
- 9. Utility clearance requirements

Skills in:

1. Assessing the potential for tree and equipment conflicts

Weight: 20%

- 2. Assessing tree structure (e.g., branch strength, decurrent versus excurrent branching)
- 3. Predicting growth response to pruning (e.g., direction, rate of growth)
- 4. Determining the risk of pathogen entry through pruning wounds (i.e., compartmentalization of decay in trees [CODIT] process)
- 5. Performing a site assessment
- 6. Determining appropriate pruning method

Task B: Conduct tree pruning to eliminate the interaction between the tree and utility infrastructure using appropriate techniques and equipment to minimize impact on tree health.

Knowledge of:

- 1. Anatomy and physiology of tree trunk and extremities (e.g., branch collar, branch bark ridge, codominant stems, branch weight)
- 2. Pruning systems (e.g., natural, pollarding)
- 3. Improper pruning techniques (e.g., topping or stub cuts)
- 4. Cutting techniques (e.g., manual, mechanical)
- 5. Rigging techniques
- 6. Personal safety when pruning near utility infrastructure (i.e., use of personal protective equipment [PPE])
- 7. Industry standards regarding line clearance (e.g., distance between tree limbs and utility equipment, foliage overhang)
- 8. Trends in Federal, State, County, and Municipal regulations regarding tree pruning

Skills in:

- 1. Performing a branch removal cut
- 2. Performing a branch reduction cut
- 3. Performing a heading cut
- 4. Identifying an appropriate rigging system based on the pruning program and site conditions
- 5. Assembling a rigging system
- 6. Utilizing rigging to allow for controlled decent of pruned limbs

Task C: Advise stakeholders on tree risk assessment regarding the benefits and limitations of tree pruning.

Knowledge of:

- 1. Risk assessment
- 2. Power grid reliability (i.e., interactions within the grid system)
- 3. Necessary conditions for a tree to be safely removed
- 4. Tree growth habit (i.e., branching structure, morphology)

Skills in:

- 1. Determining the likelihood of tree failure
- 2. Determining the likelihood of tree and/or branch failure associated with a target and/or utility structure
- 3. Assessing the impact of tree failure on a target utility structure
- 4. Determining feasibility of tree transplant to another location
- 5. Assessing the benefit/costs of tree removal or replacement programs

Program Management

Task A: Develop a business plan for implementing the vegetation management program.

Knowledge of:

- 1. Budgeting
- 2. Procurement of services and contractors
- 3. Seasonality of implementing vegetation management program features (i.e., seasonal plant growth/response and associated tool/chemical effectiveness)
- 4. Regional/Industry accepted safety practices
- 5. Regional/industry environmental best management practices

Skills in:

- 1. Developing policy in support of the vegetation management program
- 2. Communicating the importance of a vegetation management program to overall organizational strategic outcomes
- 3. Formulating a program budget
- 4. Assessing equipment and material needs for implementing a vegetation management program
- 5. Evaluating vegetation management program outcomes

Weight: 13%

Task B: Implement the vegetation management program using geospatial, remote sensing, and topographical resources.

Knowledge of:

- 1. GPS/GIS systems
- 2. LiDAR technology
- 3. Traditional mapping and navigational tools
- 4. Electronic vegetation management platforms

Skills in:

- 1. Using GIS technology
- 2. Interpreting traditional maps (e.g., survey, topographical)
- 3. Interpreting GPS/GIS maps
- 4. Collecting data using smart devices
- 5. Utilizing data gathered from smart devices
- 6. Analyzing information captured using aerial patrol technology (e.g., photographs, sensor readings, LiDAR-derived images)

Task C: Assess the risk that a vegetation management program may generate for the utility company, direct customers, and general public.

Knowledge of:

- 1. Public safety
- 2. Reliability standards
- 3. Land use and rights pertaining to vegetation management (e.g., easement, right-of-way [ROW])
- 4. Legal and regulatory compliance (i.e., governmental regulations, local ordinances, and protected wildlife and plants)
- 5. Methods of outreach and public relations
- 6. Cultural compliance (e.g., disturbing burial areas, archeological sites, historical sites)
- 7. Fire indexes and extreme weather events

Skills in:

- 1. Identifying vegetation conditions that could cause a mechanical or electrical fault or interruption
- 2. Recommending appropriate methods to mitigate risk associated with storm and fire events
- 3. Identifying characteristics of a climbable tree that is accessible to the public
- 4. Monitoring compliance with relevant law and/or regulations

Task D: Assess the outcomes of the vegetation management program.

Knowledge of:

- 1. Performance assessment for employees and contractors
- 2. Program evaluation
- 3. Customer relations metrics
- 4. Reliability metrics

- 1. Formulating metrics for evaluating the vegetation management program
- 2. Adjusting a vegetation management program based on recent work outcomes
- 3. Measuring productivity of crews performing vegetation management
- 4. Monitoring execution of the vegetation management plan
- 5. Assessing the efficacy of vegetation control methods
- 6. Analyzing economic and ecological cost of the vegetation management activities

Task E: Develop mitigation plans for addressing fire and extreme weather events.

Knowledge of:

- 1. Trends in fire prevention
- 2. ROW principles for both electrical aerial and underground lines
- 3. Methods for risk assessment (e.g., risk analysis, hazard identification, exposure identification, estimation of risk
- 4. Methods for reinforcing and maintaining utility infrastructure to withstand fire and extreme weather events

Skills in:

- 1. Conducting risk assessments for on- and off- ROW trees
- 2. Assessing trees for storm and fire vulnerabilities
- 3. Assessing how the vegetation management program could contribute toward preventing damage associated with fire and/or extreme weather events (e.g., system hardening)
- 4. Collaborating on methods for reinforcing utility infrastructure to prevent damage associated with fire and/or extreme weather events

Task F: Develop an emergency management plan.

Knowledge of:

- 1. Emergency management systems
- 2. Incident Command System (ICS)
- 3. Resource management (i.e., fleet, logistics, safety, security)

Skills in:

- 1. Conducting emergency response training
- 2. Monitoring storm events using technology and communication channels
- 3. Coordinating electrical system assessments
- 4. Establishing restoration objectives and priorities
- 5. Monitoring completion of restoration objectives in accordance with established protocols and priorities
- 6. Developing a vegetation management emergency response plan
- 7. Deploying emergency responders
- 8. Identifying risks and hazards during an event
- 9. Communicating elements of emergency preparedness to stakeholders

Weight: 18%

Integrated Vegetation Management

Task A: Determine vegetation management methods to meet program requirements.

Knowledge of:

- 1. Project planning
- 2. Vegetation control methods (i.e., mechanical, manual, cultural, chemical, and biological)
- 3. Timing and desired outcome(s) of vegetation control
- 4. Environmental, Social, and Governance (ESG)
- 5. Benefits of trees

- 1. Preparing site-specific prescriptions for vegetation management
- 2. Developing tolerance levels for use as action thresholds for vegetation maintenance treatment options
- 3. Determining the balance between program goals and customer satisfaction
- 4. Assessing the economic effects of the program
- 5. Assessing impact of the vegetation management program on the local ecology (e.g., water resources and animal habitat)
- 6. Identifying vegetation-related factors that affect outage indexes (i.e., SAIDI, SAIFI, MAIFI, and CAIDI)
- 7. Developing an annual vegetation maintenance plan based on site assessment

Task B: Manage vegetation using mechanical, manual, biological, and cultural vegetation control methods.

Knowledge of:

- 1. Machinery used for vegetation control
- 2. Hand tools used for vegetation control
- 3. Biological and cultural vegetation control techniques
- 4. How technology can be used to schedule/deploy appropriate management techniques
- 5. Control method's impact on arborists' health and safety

Skills in:

- 1. Selecting equipment (i.e., machinery and hand tools) to be used for manual vegetation control methods
- 2. Clearing vegetation using tools (i.e., machinery and hand tools)
- 3. Mowing utility corridors in accordance with local standards
- 4. Monitoring adherence to physical safety protocols for self and others
- 5. Comparing the outcomes of utilizing different vegetation management techniques (e.g., manual, mechanical, herbicide, biological, engineering alternatives)
- 6. Considering engineering alternatives in vegetation management, where applicable

Task C: Manage vegetation using chemical vegetation control methods.

Knowledge of:

- 1. Chemical modes of control
- 2. Types of herbicides
- 3. Methods of herbicide application
- 4. Mode of action classes within herbicides
- 5. Closed chain of custody for herbicides
- 6. Herbicide toxicity
- 7. Types of growth regulators
- 8. Pesticide use regulations

Skills in:

- 1. Selecting herbicides to be used for chemical vegetation control methods (e.g., selective versus non-selective chemical control)
- 2. Predicting vegetations' physiological response to herbicides
- 3. Handling herbicides in accordance with regulation and best practices (i.e., storage, mixing, and disposal)
- 4. Implementing emergency spill procedures for herbicides
- 5. Interpreting labels on herbicide containers
- 6. Applying herbicides in accordance with applicable regulations and label information using a delivery system suitable for the situation and project site
- 7. Applying growth regulators in accordance with applicable regulations and label information using a delivery system suitable for the situation and project site
- 8. Monitoring adherence to chemical safety protocols for self and others
- 9. Measuring efficacy of herbicide application

Task D: Monitor project activities to ensure a minimal impact on the environment.

Knowledge of:

- 1. Local ecology (i.e., relationship between local flora and fauna)
- 2. Local threatened and endangered species and prescriptions required for habitat
- 3. Wetland management
- 4. Invasive plant management
- 5. ROW environmental stewardship programs

- 1. Mitigating the spread of non-native invasive plants
- 2. Identifying wetlands and other environmentally sensitive areas
- 3. Monitoring the impact of the vegetation management program on local water resources and animal habitat (including habitat for threatened species and pollinators)

Electrical Knowledge

Weight: 29%

Task A: Identify how electricity is transferred through utility infrastructure.

Knowledge of:

- 1. Electrical terminology (e.g., voltage, amperage, resistance)
- 2. Electrical conductivity
- 3. Electrical induction (i.e., step potential)
- 4. Electrical systems (e.g., generation, transmission, distribution)
- 5. Radial versus loop feeds

Skills in:

- 1. Interpreting circuit or line maps
- 2. Explaining how different utility systems function

Task B: Identify common electric system hardware.

Knowledge of:

- 1. Line construction types
- 2. Pole/line hardware
- 3. Fuses

Skills in:

- 1. Inspecting electrical system hardware (e.g., pole, line)
- 2. Explaining the functionally of electrical system hardware (e.g., transition of electricity, physical durability)

Task C: Comply with safety standards when working near electrical conductors.

Knowledge of:

- 1. Sources of electrical shock (i.e., direct and indirect contact)
- 2. Standards pertaining to electrical hazards
- 3. Minimum approach distances

Skills in:

- 1. Assessing risk of personal electrocution
- 2. Maintaining minimum approach distances
- 3. Identifying voltage differences
- 4. Understanding situations that cause electrocution (e.g., phase-to-phase, phase-to-ground)
- 5. Explaining the difference between automatic and manual operation of electrical devices
- 6. Utilizing PPE to reduce risk of electrocution
- 7. Operating equipment within its specifications to reduce risk of electrocution

Task D: Assess how vegetation/contact may cause outages.

Knowledge of:

- 1. Back feed (e.g., causes of and potential harm to the grid, safety risk)
- 2. Step potential
- 3. Electrical faults

- 1. Identifying trees and tree parts that may cause future electrical faults
- 2. Recognizing trees that have experienced damage due to electrical faults
- 3. Explaining how utility systems manage fluctuations in electricity distribution to protect utility infrastructure
- 4. Recognizing that a fail-safe system has been tripped (e.g., fuses, cutouts, switches)
- 5. Interpreting outage statistics

Weight: 20% **Customer Relations**

Task A: Communicate with the public regarding arboricultural practices and project-related details.

Knowledge of:

- 1. ROW (i.e., rights and limitations)
- 2. Easements
- 3. Deeds
- 4. Professional conduct (e.g., attire, communication, PPE)
- 5. Right tree, right place

Skills in:

- 1. Explaining arboricultural practices to a general audience (e.g., pruning, right tree/right place, safety concerns)
- 2. Explaining legal rights of utility and property owners in the context of the ROW
- 3. Communicating the need for vegetation clearing for safety and reliability to homeowner/ratepayer (e.g., service interruptions, property damage, fire hazards)
- 4. Discussing how methods of conducting the vegetation management program can impact the public (e.g., use of chemicals and equipment)
- 5. Informing property owners and other stakeholders of vegetation management activities
- 6. Mitigating conflict between the vegetation management program and stakeholders/customers
- 7. Addressing landowners in an effective and professional manner

Task B: Align the vegetation management program with governmental rules and regulations.

Knowledge of:

- 1. Relationships between the utility provider and relevant governing bodies
- 2. Jurisdictional boundaries between relevant governing bodies
- 3. Real estate terms (e.g., fee owned, easements, adverse possession)

- 1. Searching for property records
- 2. Searching for applicable local regulations or ordinances
- 3. Interpreting applicable local regulations or ordinances